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Abstract—As society progresses towards increased 

automation in aviation—such as with Advanced Air Mobility and 

Unmanned Aircraft Systems—it is important to have a common 

understanding and perspective about automation among the 

many stakeholders, including aviation system designers, 

operators, maintainers, and regulatory authorities. 

Unfortunately, the discourse is hindered by misleading 

perspectives, assumptions, claims, and terminology. 

There are many examples. The term “automation” can be 

simply defined, but it is often confounded with “autonomous” 

and other descriptions of the function being automated, and 

further confounded by our subjective opinions on which 

functions are considered “advanced” or “intelligent”. 

Automation is often discussed not as a tool that can be leveraged 

to achieve goals of the aviation community, but rather as a 

technocentric goal in itself. We often refer to automation as “an 

AI” (artificial intelligence) or a “team member”, or other ways in 

which we anthropomorphize machines, yet do not clearly define 

functions for automated components of these desired systems. 

We argue that humans are prone to errors and that more 

automation therefore means fewer errors, without a fair balance 

that considers humans as valuable functional elements. We talk 

about operator trust as if the idea is unique to AI, when in fact 

the basic principles for human-automation interaction have not 

changed. We try to treat automation as a one-dimensional 

variable, such as with automation levels, but this hides important 

detail and has limited value in applications such as design, 

operations, and approvals of complex human-automation 

systems.  

This paper identifies issues in recent automation and human-

automation discourse, and provides clarifications and 

recommendations to improve progress towards the integration of 

increased automation in aviation systems. 
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automation, human-computer, human-machine, HMI, HCI, HSI, 

HAT, levels of automation, teams, teaming, artificial intelligence, 
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I. INTRODUCTION 

The field of aviation may be on the cusp of a 
transformation in which automation is expected to be a key 

enabler.  This includes artificial intelligence (AI), or at least its 
better-defined AI subset of machine learning (ML) algorithms, 
which have indeed introduced new opportunities in 
automation. While AI/ML has brought renewed attention to 
automation, it has also brought distracting and misleading 
information related to automation and human-automation 
integration, with far-reaching effects, even on the human side 
of the human-automation duality. 

This paper addresses the topic of automation in aviation, 
including future “transformative” aviation systems such as 
Advanced Air Mobility (AAM) and Unmanned Aircraft 
Systems (UAS).  It identifies misleading perspectives, 
terminology, claims, assumptions and other issues in recent 
automation discourse, and provides clarifications and 
recommendations in the following topic areas:  

 Predicting automation capabilities 

 Categories of automation 

 Human-automation teaming 

 AI and human factors 

 Human and automation errors 

The arguments presented are based primarily on prior (vs. 
new) research, and historical lessons. The intention of this 
work is to return to meaningful perspectives on automation, 
and to facilitate the appropriate integration of automation 
within future aviation systems.  

II. PREDICTING AUTOMATION CAPABILITIES 

One of the most fundamental challenges in automation 
discourse is the simple question, “What can be automated?” 
This is like asking the question, “What can be modeled?” The 
famous response to that question is, “All models are wrong, but 
some are valuable”. In a similar sense, functions “can” be 
automated, but whether automation will be valuable or 
appropriate is generally not answerable. That is, there is no 
general theoretical basis for determining which functions can 
be automated, or, in other words, for predicting automation 
capabilities.  
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The scope of automation considered here is for new or 
novel applications of automation for complex functions, such 
as cognitive tasks traditionally performed by humans. The 
conceptual choice whether or not to automate a function (or 
allow an operator to automate a function) is a complex design 
decision that involves many considerations, assumptions and 
uncertainties of hardware/software, operational environments, 
operator training, etc., perhaps most important of which is the 
function being automated.  Even if we limit considerations to 
just functional performance, versus broader considerations like 
ethics, jobs, and human factors, the details and nuances of a 
function within its operating environment are unique, and the 
possible algorithms (means of automation) infinite.  

A. Historical Lessons 

Historically there have been many attempts to simplify the 
approach to determining what can be automated. In early 
research, [1] defined a list of functions that “machines are 
better at” or “man is better at” (MABA-MABA).  There are 
heuristics like the “3 Ds”: automate what is Dull, Dangerous, 
or Dirty. There are many more such lists and models for 
automating (particularly in comparison to humans), which 
become increasingly complex when moving away from simple 
heuristics, eventually being impractical to use. Such recipes for 
what should be automated fall short in application in part 
because they cannot capture the complex multivariable 
tradeoffs that are needed and the almost infinite ways humans 
and automation can work together [2]. 

There are also lessons to be learned from the field of AI. 
Early on, many claims were made about the potential of AI—
notably symbolic AI such as Expert Systems—to achieve 
intelligence capabilities of human experts. One of the 
underlying assumptions was that expert knowledge could be 
elicited and codified in the form of symbolic rules. Despite 
evidence that human intelligence and expert knowledge in 
particular involves a tacit knowledge component that eludes 
declarative knowledge elicitation, critiques of the AI claims 
were often met not with respectful disagreement, but with 
derision. An early example is Hubert Dreyfus [3], who for 
many years endured attacks by the AI community, long before 
connectionist or nonsymbolic AI such as ML became practical.  
Most of Dreyfus’ criticisms were eventually vindicated after 
years of failed demonstrations by the AI community, primarily 
those of Expert Systems, leading to the first “AI Winter” in the 
1970s.  

It may be that one of Dreyfus’ arguments (human experts 
do not behave according to explicit rules) is as defensible as it 
can ever be regarding the ability of automation to achieve 
human-like intelligence. For example, explicit rules could offer 
an alternative method of achieving intelligence, and might 
serve to automate functions if the function is at least 
understood sufficiently well by developers—but who can 
precisely define limits to what is achievable? Just because we 
can’t conceive of rules doesn’t mean such rules can’t be 
conceived or that such rules do not exist [4]. In general, the 
field of AI continues to provide new insights and opportunities, 
but its history also exemplifies the challenge in predicting what 
automation can or cannot do, and substantiating such 
predictions.  

B. Demonstrations of Automation 

Rather than theoretical proofs of what functions can be 
automated, we primarily depend on analogies to what has been 
demonstrated to work by whatever means available. That is not 
a theoretical basis; that is an observation of specific cases with 
specific algorithms, which can further be interpreted for 
potential application to similar cases. For example, we can now 
predict the near-term performance of future automated speech 
recognition systems (which had achieved impressive 
performance prior to AI) because of their extensive history of 
demonstrations and operational use. In the early attempts of 
speech recognition, such predictions had no substantive basis.  

C. Safety-critical Automation 

Even when specific cases of automation have been 
demonstrated, safety-critical applications present additional 
challenges, especially for very low-probability events. 
Furthermore, some events are a type called “unknown 
unknowns”. That is, we can assume there are events that could 
occur during operation, but that we do not know specifically 
what they are. Consideration of unknown unknown operational 
events are safety and validation challenges, and an important 
aspect of resiliency. They are even more important as the 
functions being automated encroach on what have traditionally 
been performed by humans, partly due to the belief that 
humans can often better adapt to situations that were not 
explicitly trained, nor explicitly considered during design. 
Although that belief may be shifting with ML, for example, it 
remains that unknown unknowns are an important aspect of 
safety, and further limit our ability to understand automation’s 
capabilities. 

In summary, in the absence of precedence such as tests and 
demonstrations of specific functions in specific environments, 
one cannot definitively predict what automation can or cannot 
achieve. Perhaps the most we can say is that developers need 
sufficient understanding for symbolic algorithms, and 
developers need sufficient data for training ML algorithms—
both of which say nothing about the nature of the function 
being automated. The devil is in the details of the algorithms 
and intended functions and operational environments, and 
many other variables. The consequence is that specific tests 
and demonstrations should be relied upon over general claims 
about automation capabilities. Another consequence is that 
strategic plans and roadmaps of aviation capabilities should 
depend on automation only if automation has at least been 
sufficiently demonstrated. Automation should generally be 
viewed as a potential means to a capability, and not a goal in 
itself. 

III. AUTOMATION CATEGORIES 

Another challenge with automation is in how we simplify 
the complex reality of aviation systems and the myriad of ways 
that automation can be integrated into aviation system 
operations. Automation categories, such as levels, are one way 
to simplify this complexity through a perceived reduction in 
dimensionality, such as in categories of common attributes. 
While there can be some value to an automation taxonomy, 
their historical use has not established precedence in 
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application to complex system design, operations, and 
approvals. 

A. Definitions and Assumptions 

For discussions like this, some definitions and assumptions 
are needed. First, “automate” is defined here as simply the 
physical realization (implementation) of a function in hardware 
and software. A function might be abstract and described at 
various levels of detail, but implementing an intended function 
in hardware and software vs. humans (i.e., to automate a 
function) is a simple, objective determination. “Automation” or 
“automate” should not be confused with “autonomous”. The 
term “autonomous” is fraught with relative and subjective 
attributes, and is often a distraction in the context of defining 
functions. “Automate” refers to a binary variable whose states 
are human (fully manual) or fully automated, and its state is of 
limited value without the additional consideration of functions 
and subfunctions.   

Second, it is the function that describes what is automated, 
versus how it is automated. Although there is no limit to the 
number of functions that may be defined, or the degree to 
which a function can be decomposed into subfunctions, this 
enormous variability can be categorized into simple pieces and 
combined with the binary human-automation variable to create 
what is known as an “automation category”, sometimes as 
“levels of automation” or “degrees of automation”. These have 
taken many forms, and with various purposes. One early 
example is a two-dimensional taxonomy in which the function 
dimension is categorized as information acquisition, 
information analysis, decision and action selection, and action 
implementation [5]. 

For automation taxonomy purposes, it is reasonable to 
consider at least two dimensions together: a) The human-
automation dimension, and b) the function dimension.  

B. Potential Issues with Automation Categories 

Automation categories have been used and misused over 
the decades. There can be many benefits to automation 
categories, such as to allow different perspectives and insights, 
or as a way to structure research. But there are also well-known 
issues, often stemming from their misapplication. Many of the 
pros and cons have been articulated cogently, as in [6], which 
identifies shortcomings such as oversimplification and 
discretization of a continuous and complex automation variable 
space. The following discussion builds upon these prior 
arguments, with a focus on the application of automation 
categories for normative versus descriptive purposes, and in the 
context of design and operation of aircraft, and their 
design/operational approvals.  

C. Importance of Functional Detail 

One well-known problem in the use of automation 
categories is the issue of insufficient functional detail. For 
example, one might describe an entire aircraft as having a 
certain degree of automation, without any description of the 
aircraft functions. While this is theoretically possible (perhaps 
in fully automated or fully manual aircraft), it implies that all 
the functions on the aircraft are automated similarly. For 

reasonably complex systems, and in the context of the human-
centered aviation system that exists today, the myriad of 
functions combined with the myriad of ways those functions 
can be automated results in a combinatorial explosion along the 
two dimensions defined (the human-automation dimension 
combined with the functional dimension). “How is that aircraft 
automated?” does not have a simple answer.    

D. Categories in Aircraft Design Approvals and Operations 

Consider how manned aircraft are approved today, such as 
through a Type Design approval by the Federal Aviation 
Administration (FAA). The applicant, such as an aircraft 
manufacturer, has to comply with a host of federal regulations 
which are applied to potentially hundreds of defined functions 
and subfunctions. The intended functions are analyzed 
thoroughly by a number of technical specialists, driven 
primarily by safety considerations. That analysis strongly 
depends on the details of a function as well as how that 
function is implemented, and many other considerations, 
including assumptions of human operator roles. Automation 
categories are not applied because they hide important detail, 
and are not useful for the approval tasks.  Function details and 
automation details (vs categories) are important in the analysis 
for regulatory compliance (e.g., design approvals), and need to 
be examined together versus independently. Furthermore, high 
degrees of integration at the aircraft level necessitate an 
analysis of how functions interact with other functions on the 
aircraft and throughout other parts of the aviation system. The 
point is that this aircraft design approval process today 
accommodates the necessary scrutiny to address automation 
integration complexity, and is likely incommensurate with 
typical categories of automation that inherently hide detail.  

Automation categories in operational aspects, including 
airspace procedures, flight crew standard operating procedures, 
and flight crew training, face similar issues. For example, in 
commercial operations, a systematic, data-driven analysis of 
the operational use of flight path management systems found 
that automation levels were sometimes attempted to be used by 
airline operators, but many operators needed to revise their 
policy to reflect actual automation use [7]. The rigid, 
simplistic, and linear structure of automation levels does not 
stand up to the complexity of actual airline operations. 

E. Lessons from Automobiles 

In the apparent race toward automation, road vehicles 
perhaps are leading the way, and might provide some lessons 
regarding automation categories.  

SAE J3016 [8] is a standard that defines six human-
automation “levels”, from Level 0 (fully manual) to Level 5 
(fully automated).   

The SAE levels are based on 5 function variables related to 
driving tasks, paraphrased for this discussion as follows: 

 Long – Longitudinal control (e.g., speed) 

 Lat – Lateral control (i.e., steering) 

 Event – Object and event detection and response (e.g., 
collision avoidance)  
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 Fallback – Contingency mode of operation, such as 
after a system failure or change in the operational 
environment 

 Environment – Assessing the operational domain (e.g., 
weather, terrain, day/night) with respect to the 
limitations of a function (e.g., lateral control) 

Even though the SAE levels are designed to be “descriptive 
and informative, rather than normative”, they illustrate the 
degree of simplification typically needed for an automation 
taxonomy. Conceivably, Long, Lat, and Event can be 
considered the primary driving functions, with each having a 
normal and a Fallback mode: a 3x2 function space. 
Additionally, each function within that 3x2 space can involve 
Environment to evaluate the conditions appropriate to the 
functions (Environment is described in [8] as a system vs 
human attribute, but in this discussion is broadened to include 
humans). This 3x2x2 space (12 states) does not even address 
further distinctions within each function, such as decisions vs 
actions, which, despite the low granularity, brings the number 
of functional states to 24. Of these 24 states, at a vehicle level, 
one can also consider the many possible combinations of 
functions, and additionally the combinations of 
human/automation allocation. Actual designs can introduce 
additional layers of how humans and automation might 
combine, including the possibility of those combinations 
dynamically changing, such as from mode selections. Although 
not every combination might be relevant in a taxonomy, the 
point is that even in the case of a small set of functions the 
possible combinations within a vehicle quickly becomes large, 
and difficult to capture in simple yet meaningful categories.  

Yet, SAE defined only 6 levels. This is achieved through 
selection of specific combinations of functions and automation 
for each level, combining both dimensions into one, and with 
unclear rationale other than some progression of more 
automation. For example, Level 1 covers the specific 
combination of Long OR Lat, while Level 2 covers Long AND 
Lat.  While the precise rationale of the taxonomy is not 
described, the result is indeed a simple scheme that is perhaps 
appropriate for the intended descriptive purpose, and which 
“make it possible for a range of engineering disciplines to talk 
about the next generation of cars” [9]. But the resulting loss of 
dimensionality necessitates numerous explanatory notes and 
examples in the SAE standard to explain the levels, revealing 
some of the hidden true complexity. Similar issues are inherent 
to other automation category schemes as well, suggesting that 
linear or even monotonic descriptions of automation are 
limited and could be misused to characterize a 
multidimensional space of functions and means of automation.  

F. Aircraft Levels of Automation 

In recent years, a new set of automation categories began to 
emerge within the aviation community, such as in Urban Air 
Mobility (UAM).  (The general concept has been broadened in 
scope and named AAM). For example, the FAA UAM 
Concept of Operations [10] defines the following categories to 
describe “the evolution of aircraft automation”: 

 Human-within-the-Loop (HWTL): Human is always in 
direct control of the automation (systems) 

 Human-on-the-Loop (HOTL): Human has supervisory 
control of the automation (systems), and actively 
monitors the systems and can take full control when 
required or desired 

 Human-over-the-Loop (HOVTL): Human is informed, 
or engaged, by the automation (systems) to take action. 
Human passively monitors the systems and is informed 
by automation if, and what, action is required. Human is 
engaged by the automation either for exceptions that are 
not reconcilable or as part of rule set escalation 

Table I provides a simplified breakdown of these UAM 
categories to highlight the subfunctions of human control and 
monitoring within each category, and to easily compare key 
attributes.   

Is this taxonomy helpful? Given that the purpose is 
descriptive, the levels do convey a possible “evolution of 
automation”, which is the stated intent. Are there possible 
issues with this taxonomy? There are a number of potential 
concerns, depending on more specific purposes: 

1)  Unclear boundaries on a continuum 
As is often the case with automation levels, the issues tend 

to lie in the middle. In this case, HOTL’s “supervisory control” 
can cover just about anything with respect to the degree of 
directness of control and the degree of monitoring, both of 
which are essentially on a continuum, with HWTL and 
HOVTL representing the extreme cases (end points) on the 
continuum. As one example, HOTL allows for humans to take 
full control when desired, in which case direct control (HWTL) 
is an option during operation.  That sounds like how many 
aircraft operate currently: pilots often engage flight path 
automation, and take more direct control when necessary. On 
the other end of the spectrum, definitions of supervisory 
control typically include cases in which automation informs 
humans when to intervene (whatever the reason), so HOVTL 
also sounds very familiar in current aircraft. Does HOVTL 
differ from HOTL by precluding full control by humans, but 
still allowing some control? In HOVTL, can humans intervene 
when they desire, or are they restricted to wait until automation 
dictates how to intervene? What is the boundary between 
active and passive monitoring? How do alerts fit in—they 
inform humans whether an action is required, and sometimes 
what action is needed, and seem to potentially exist in all three 
categories. The definitions of HWTL, HOTL, and HOVTL 
illustrate a progression along a human control/monitoring 
continuum, but their lack of clear boundaries and overly  

TABLE I.  BREAKDOWN OF UAM AUTOMATION LEVELS 

  
Levels 

 

Human 

Role 
HWTL HOTL HOVTL 

Human 

Control 

Always in 

direct control 

Supervisory: can 

take full control 

when required or 

desired 

When automation 

informs human if 

and how action is 

required 

Human 

Monitoring 
Active Active Passive 
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constraining definitions may present challenges to real world 
categorization. 

2) Aircraft versus aircraft functions 
An aircraft can be characterized by many functions, so, 

logically, an aircraft as a whole should not fall into any one 
category unless every function on that aircraft falls into that 
same category. Typically, aircraft use automation in a variety 
of ways, depending on the function and many other factors. 
Considering the possible number of combinations of functions 
and human-automation implementations, it may not be 
reasonable to characterize an aircraft in one of only three 
categories. 

3) Coarse and linear categories 
The categories appear along a single dimension, and can be 

interpreted as “levels”. However, as with the SAE road vehicle 
levels discussed earlier, the human-automation dimension and 
the function dimension are combined into one.  Each 
dimension is furthermore about as coarse as automation 
categories could possibly be, with the function dimension 
being restricted to generic observer/controller aspects (e.g., 
active vs passive monitoring).  This low granularity and 
linearization can seem beneficial in that it allows for very 
simple perspective of complex systems and operations. 
However, such a reduction in dimensionality suggests a very 
limited practical use.  

Without an understanding of these concerns, there is a risk of 
applying automation categories inappropriately. Recently the 
UAS Beyond Visual Line of Sight (BVLOS) Aviation 
Rulemaking Committee report [11] provided recommendations 
to the FAA, and identified categories of operations called 
“Automated Flight Rules” (AFR).  AFRs establish very coarse 
and linear “autonomous levels” of operations for aircraft versus 
individual functions.  Each category has associated human 
roles/qualifications, automation functions for flight controls, 
and aircraft equipage requirements (to-be-determined), in 
which the automation levels mirror the UAM categories 
defined above.  The report appears to recommend that 
automation levels should dictate or at least map directly to pilot 
qualification and equipment requirements.   

Although the ARC report is advisory, and an early step in 
the conversation about UAS BVLOS regulation, its definition 
of automation levels and mapping to pilot qualifications and 
equipment requirements implies a potential to apply 
automation levels prescriptively towards technical decision 
making related to safety. As mentioned, aircraft can be 
described by a large number of functions, each of which can 
potentially use automation in many ways that are not always 
represented sufficiently in coarse, linear, predefined human-
automation categories. Prescribing pilot qualifications or other 
design or operational requirements depend on the details of 
precisely how humans and automation interact, as well as the 
details of the functions being automated, and many other co-
dependent variables. The level of detail needs to be 
commensurate with the analysis or decisions, so attempts to 
streamline these details through coarse human-automation 
categories might have little or no precedence from past manned 

aircraft, and limited value in characterizing or prescribing UAS 
or other aviation systems and operations.  

IV. HUMAN-AUTOMATION TEAMING 

Another challenge in the discussion of automation is related 
to systems that are characterized as human-like in behavior. As 
mentioned, general claims about automation’s potential 
capabilities are difficult to substantiate. Even so, in the context 
of engineering it can be a distraction to describe systems (e.g., 
hardware/software functions or requirements) as 
anthropomorphisms that are subjective or otherwise ill-defined. 
Examples include descriptions such as “intelligent”, 
“autonomous”, and “aware”. While not all anthropomorphic 
terminology is inappropriate, nor is humanness only achieved 
through automation [12], such terminology likely provides 
little value in an engineering sense unless further translated 
into what can be evaluated against well-defined criteria. Even 
those in the field of AI typically wish to escape their label, in 
part because there is no universally accepted definition of 
“intelligence”, and because AI becomes a moving target, 
relative to current capabilities. 

In system design and approval, it is critical that all 
functions are described unambiguously and at appropriate 
levels of detail.  

A. Automation as a Team Member 

Anthropomorphism is particularly rampant when applied to 
“human-automation teaming”, or HAT. The intent of HAT 
concepts is for automation to behave less like a tool that is 
controlled by humans, and more like a proactive human team 
member (perhaps even called “an AI”). Moving beyond the 
traditional human-computer interaction (HCI) principles, the 
defining characteristics of HAT often include: 

 Mutual coordination of tasks 

 Pursuit of shared goals:  

 Shared situation awareness  

 Shared understanding  

 Bidirectional communication of intent, tasks, and 
actions/decisions  

 Mutual trust  

Already we can observe that the name, “teaming,” and 
many of the HAT characteristics are inherently human-like. On 
the surface, they sound like worthy design aspirations towards 
intelligent systems. But in the context of design and approval 
there are significant ambiguities.  For example, what does it 
mean for a system to “understand” or to “trust” or be “aware”? 
Reference [13] describes the automation component of HAT as 
a perception by the operator. 

There is a difference between what might be perceived as 
teaming in an operational sense, and the functional definitions 
that characterize HAT systems for design and design approval. 
These differences are not new; the HAT attributes might sound 
familiar to those who follow AI history. Even though the HAT 
characteristics often are identified as characteristics of high 
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performing human teams, that does not mean it is reasonable to 
make the leap to define these as functions of automation for 
human-automation teams, nor reasonable to avoid translating 
these into proper functional descriptions. 

B. Anthropomorphic Terminology in Aircraft Approvals 

The FAA Aircraft Certification Service provides aircraft 
design approvals based on regulations that apply to systems, 
none of which attribute human-like terminology to the systems 
versus the effects on the humans using those systems. An 
example is an FAA regulation on controls [14], which states, 
“Each cockpit control must be located to provide convenient 
operation and to prevent confusion and inadvertent operation”. 
The terms “convenient” and “confusion” apply to the display’s 
effects on human pilots, and therefore need to be evaluated in 
that sense. Such regulations are often purposely general in part 
to allow for various means of compliance, but they need to be 
commonly understood, often with the aid of guidance such as 
advisory circulars.  Furthermore, compliance determination 
often additionally requires supporting data, and evaluations 
from pilots, including professional judgment of test pilots.  
Regulations that refer to system effects on humans present 
unique challenges, and can involve a suite of guidance and 
methods to determine regulation compliance effectively and 
consistently. In this example, whether a control is “convenient” 
or whether it prevents “confusion” is challenging in part 
because that determination requires a degree of subjective 
judgment in estimating effects on the intended pilot population.  
In comparison, a HAT function defined by human-like 
terminology (e.g., “mutual trust”) would likely be more 
challenging, and need additional unambiguous function 
definitions, and possibly new alternative regulations and 
methods of evaluation. 

   As another example, the FAA dissuades the term 
“situation awareness” as intended functions of systems.  An 
FAA advisory circular on aircraft electronic displays states, 
“General and/or ambiguous intended function descriptions are 
not acceptable (for example, a function described only as 
“situation awareness”). Some displays may be intended to be 
used for situation awareness, but that term needs to be 
clarified or qualified to explain what type of specific situation 
awareness will be provided” [15]. As a specific example, 
Traffic Alert and Collision Avoidance Systems (TCAS) may 
include traffic displays along with directive alerting systems. 
The intended function of the traffic display might be 
considered to be situation awareness by many, but is 
specifically defined as how the information should be used by 
pilots in their decisions and actions—such as to assist pilots in 
the visual acquisition of traffic out the window, to provide 
pilots with confidence in proper system operation, and to 
prepare for a maneuver if certain alerts are issued.     

Situation awareness exemplifies the need to replace or 
supplement functional descriptions with appropriate detail, 
even when applied to system effects on users.   Without further 
interpretations and detail of HAT (e.g., of “shared situation 
awareness”, “shared understanding”), it is reasonable to 
suggest that applying such anthropomorphic descriptions to 
systems (versus users) will remain incompatible with current 
FAA approval processes.   

HAT may be on the path to repeat similar mistakes from 
the past decades of AI development in emulating human 
behavior. There will always be value in pushing the limits of 
automation within human-automation interaction. This 
progress should not distract from clearly defining HAT system 
functions for design and design approval purposes, separately 
from how they might be perceived as human-like by operators.  

V. AI AND HUMAN FACTORS 

What, then, is the relevance of AI to the field of human 
factors? It should be accepted that human factors is critical 
throughout aviation systems design, operations, approvals, 
maintenance, etc., especially with the introduction of new 
systems and automation. New or novel automated functions 
introduce unknown rippling effects (to other systems and 
humans). A key driver of the need for human factors scrutiny is 
not AI, per se, but new automation capabilities (or functions). 
Whether automating functions is achieved through AI or 
traditional algorithmic means is often not relevant to human 
factors—at least not in the context of operations.  This section 
identifies potential points of confusion surrounding the impacts 
of AI on human factors, with a focus on ML. 

A. Operationally Relevant Information 

First, an assumption is made here that humans need to 
exchange information with an automated system, and for this 
discussion, such information is limited to be what is 
“operationally relevant”. Operationally relevant information is 
a term used here to, for example, distinguish detailed algorithm 
information from that which is directly relevant and 
appropriate to supporting and operator’s task.  

Operationally relevant behavior is a broader term, and an 
important aspect of an FAA regulation and its advisory circular 
that address the operational use of aircraft systems by flight 
crews [16][17], which uses the phrase “operationally relevant 
behavior” towards information, the system’s operational logic, 
and other aspects of a system—not the detailed logic of the 
software.  The advisory circular states that operationally 
relevant behavior “distinguishes between the system behavior 
as perceived by the flightcrew and the functional logic of the 
systems flightcrews operate.”  

During operations, much of what goes on “inside the box” 
(or, to use a vehicle analogy, “under the hood”) is not 
operationally relevant. Most algorithmic details of automation, 
including whether it involves AI, or what type of AI, is 
typically not relevant to operators. For example, when one uses 
speech recognition on a smartphone, they don’t know if AI was 
used—those details are under the hood. The operationally 
relevant aspects are overall speech performance such as 
accuracy, speed, etc. Sometimes, as in decision support tools, 
understanding the rationale or logic behind an automated 
decision recommendation might be included in the set of 
information that is operationally relevant, and some forms of 
AI are black boxes in that they are inherently limited in their 
ability to provide certain information.  The idea of operational 
relevance is important to help understand the relationship 
between AI and human factors.  
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B. Machine Learning 

One class of AI particularly relevant to this discussion is 
ML. ML considerations are driving many recent AI capability 
and AI interaction discussions. ML is characterized by 
algorithms such as neural networks whose algorithms are fully 
determined through training on data sets (this discussion 
assumes the algorithm does not further change during 
operations).  There are many variations, such as if or how 
humans are part of training. However, the key aspect of ML for 
this discussion is that automated functions are not achieved 
through explicit, human-understandable rules and symbols, as 
is the case with traditional algorithms and symbolic AI.  ML 
therefore has profound consequences on the means by which 
automation functionality can be achieved. In particular, it 
circumvents the need for designers to understand, for example, 
specifically “how” decisions are made, and instead shifts 
design towards how to learn, and understanding “what” data 
are appropriate for learning. ML also avoids many of the AI 
criticisms by Dreyfus [3], which at the time was primarily 
focused on symbolic AI (and claimed that human experts, 
opposed to novices, cannot articulate their knowledge via rules 
because their expertise is not based upon rules).  

C. Two Types of Information Processing 

In some sense, ML has similarities to human judgment and 
intuition, characterized by the absence of explicit rules and lack 
of structure, while symbolic AI and traditional algorithms have 
similarities to human analytical and deliberative thinking, 
characterized by the presence of explicit rules and structure. 
These two very different means of information processing, 
whether  through human or automation,  have been identified 
in various contexts, such as in [18–21], and can provide 
insights into the tradeoffs between different types of human 
and automated processes.  However, they are not intended to 
prescribe what functions can be automated.  The tradeoffs 
might suggest that ML is not a silver bullet for AI, just as 
Expert Systems were not a silver bullet for symbolic AI, and 
furthermore that perhaps some “neurosymbolic” or “semi-
structured” combination might be the most appropriate—even 
though the type of AI is typically not directly relevant to the 
operator.  

D. Relevance of AI to the Operator 

With that background, three arguments are presented to 
distinguish the effects of AI/ML vs. other forms of automation.  
First, ML offers very different opportunities in realizing 
automated functions because of the shift in design approaches, 
from explicit rules to data sets. However, this fundamental shift 
does not introduce new automation requirements related to 
ethics, bias, responsibility, and other characteristics of human 
decisions. It is understandable that automated functions 
formerly performed by humans might place a lens on human 
behaviors and attributes, but these qualities can be important 
considerations for automation in general, and are not specific 
to ML. ML merely has highlighted them because they are 
inherent in training data (involving humans) vs explicitly 
coded.  

Secondly, human-automation interaction considerations, 
such as human trust of automation, are also not specific to the 

type of AI or other algorithm.  Trust in automation and reliance 
on automation are important topics that have existed since 
automation research has existed, and are not unique to AI or 
ML. AI can influence the functions that are automated, but it is 
the operationally relevant behavior of automation (e.g., 
performance), including what is communicated at the human-
automation interface, that largely influences operator trust. 

Thirdly, one aspect of ML that is specifically relevant to 
operational human factors impacts is explainability. As 
mentioned, ML has a limitation inherent to the absence of 
symbolic algorithms, similarly to the limitation inherent with 
human expert knowledge.  Explainability pertains to the ability 
to explain how or why decisions or other automation outputs 
occurred, and can therefore limit the transparency of ML 
automation. This can in turn limit operationally relevant 
information, such as that which describes the logic and 
rationale behind decisions and control actions.   

When the above points are not clarified, there is a tendency 
to use “AI” and “automation” or “autonomy” interchangeably.  
As an example, the following are recommendations from a 
recent report on Human-AI Teaming [22], with the same key 
word omitted in each statement:  

“While it is assumed that human-AI teams will be more effective 
than either humans or AI systems operating alone, …. this will not 
be the case unless humans can: 

(1) understand and predict the behaviors of the _____ system  

(2) develop appropriate trust relationships with the _____ 
system  

(3) make accurate decisions based on input from the _____ 
system  

(4) exert control over the _____ system in a timely and 
appropriate manner” 

To fill in the blanks, is the correct word a) automation, or 
b) AI? The report used “AI”. However, either could reasonably 
apply, which is the point here: the statements are equally true 
with “automation” or “AI.” They all prescribe well-known, 
desired attributes of human-automation interaction, so in that 
sense nothing new is being stated, yet it leads one to believe 
that these statements may not generally apply to other forms of 
automation. While the context of the report is AI, and the 
intention may be to call attention to the continued importance 
of human factors in the new age of AI, restating traditional 
automation requirements as AI requirements can be 
misleading. “AI” refers to a means of automation, and should 
not replace “automation” unless AI brings specific 
considerations to human interaction, such as explainability. 

VI. HUMAN AND AUTOMATION ERROR 

Finally, human vs automation “error” is sometimes 
discussed in a misleading way. It is common to hear 
generalizations such as “human error is a causal factor in 80% 
of aviation accidents and incidents”. These generalizations are 
then further manipulated through an illogical claim that these 
errors can largely be eliminated if humans are replaced with 
automation.  

That claim is illogical for numerous reasons, such as: 
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 Automation brings with it other forms of system errors , 
failures, and behaviors, which typically are not 
mentioned. 

 Human errors are not eliminated when human tasks are 
replaced by automation, but, rather, shift, often in ways 
in which errors are more consequential [2]. Overall, 
changes in automation alter the overall human-
automation interactions in unpredictable ways. 

 Human contributions to safety (vs. human error) outside 
of safety events leverage resilient behaviors like 
adaptation [23], but are not well characterized in part 
because of their subtle roles normal and near-normal 
operations. 

 “Errors” can be defined in many ways, and a binary 
definition is a simplification that is not necessarily 
appropriate for an analysis. 

 Many aircraft incidents and accidents involve pilot 
challenges in understanding the situation, such as 
diagnosing automated system failure. More 
sophisticated automation may add complexity and 
exacerbate this challenge.  

The claim of “eliminating” human errors through 
automation substitution is fraught with over-simplifications 
and misguided assumptions. For reasonably complex systems 
and operations it is challenging to perform a balanced “apples 
to apples” comparison of errors, and human-automation 
performance in general, without a detailed analysis that 
considers not only errors, but all relevant behaviors of humans 
and automated systems that affect safety. The challenges 
include identifying what is lost from human cognitive skills 
that are not well characterized yet important for continuously 
contributing to safety by avoiding accidents and incidents in 
the first place. 

VII. SUMMARY AND RECOMMENDATIONS 

Automation is expected to be a key enabler of 
transformative aviation systems such as AAM and UAS. In 
particular, advances in AI have fueled bold predictions of 
automation capabilities, but also misunderstandings in recent 
automation and human-automation discourse. In this work, five 
topic areas were addressed, with the following summary of 
some of the key findings and recommendations:  

 Predicting Automation Capabilities. Since it is not 
theoretically possible to predict automation capabilities 
in a general sense, claims or plans about future aviation 
advancements enabled by automation might be 
misguided. Recommendation: Capability roadmaps 
should depend on automation only if automation has at 
least been sufficiently demonstrated.  Automation 
should generally be viewed as a potential means to a 
capability, and not a goal in itself. 

 Automation Categories. Automation categories such 
as “levels of automation” have been useful for some 
purposes such as research, but their inherent 
simplification of complex systems may limit their 

applicability in practice. Recommendation: Automation 
categories should be used cautiously for characterizing 
aviation systems and operations, especially for 
prescriptive purposes such as driving safety 
requirements.  

 Human-automation Teaming. HAT concepts are 
often based on anthropomorphic functional descriptions 
of automated systems that are ambiguous. 
Recommendation: Automated system functions within 
HAT should be defined objectively and with specificity 
for design and design approval purposes, separately 
from how they might be perceived as human-like by 
operators.  

 AI and Human Factors. AI brings many new 
opportunities for achieving automation capabilities, but 
human factors is often not uniquely impacted by AI per 
se, versus by other forms of automation. Traditional 
human-automation principles still apply in the new age 
of AI, and human factors application remains critical in 
design and operations, including approvals. 
Recommendation: In human factors research and 
application, the term “AI” should not replace 
“automation” unless AI brings specific considerations 
to human interaction, such as explainability.  

 Human and Automation Errors. As automation 
capabilities change, the claim of replacing humans with 
automation and thereby eliminating human error is 
flawed. Recommendation: When automation is altered, 
errors, information, tasks, etc., can also be altered in 
unpredictable ways throughout the human-automation 
system; the analysis of these changes should be 
commensurate with the complexity of the system and 
operations.  

This work has attempted to provide a logical basis for the 
findings and recommendations, based upon prior research 
historical lessons. One of the emergent themes is the 
importance of lessons from decades of AI progress and human-
automation integration. The lessons should continue to stand 
firmly, even if quietly among the clamor of recent AI progress 
and the rush towards the future. It is hoped that this work will 
raise awareness and improve discourse towards more 
meaningful perspectives on automation in future aviation 
systems.   
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